Heparin molecularly imprinted surfaces for the attenuation of complement activation in blood.

نویسندگان

  • Jenny P Rosengren-Holmberg
  • Jonas Andersson
  • James R Smith
  • Cameron Alexander
  • Morgan R Alexander
  • Günter Tovar
  • Kristina N Ekdahl
  • Ian A Nicholls
چکیده

Heparin-imprinted synthetic polymer surfaces with the ability to attenuate activation of both the complement and the coagulation system in whole blood were successfully produced. Imprinting was achieved using a template coated with heparin, a highly sulfated glycosaminoglycan known for its anticoagulant properties. The N,N'-diacryloylpiperazine-methacrylic acid copolymers were characterized using goniometry, AFM and XPS. The influence of the molecular imprinting process on morphology and template rebinding was demonstrated by radioligand binding assays. Surface hemocompatibility was evaluated using human whole blood without anticoagulants followed by measurement of complement activation markers C3a and sC5b-9 and platelet consumption as a surrogate coagulation activation marker. The observed low thrombogenicity of this copolymer combined with the attenuation of complement activation induced by the molecular imprint offer potential for the development of self-regulating surfaces with important potential clinical applications. We propose a mechanism for the observed phenomena based upon the recruitment of endogenous sulfated glycosaminoglycans with heparin-like activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis

Characterization and extraction of plant secondary metabolites are important in agriculture, pharmaceutical, and food industry. In this regard, the applied analytical methods are mostly costly and time-consuming; therefore, choosing a suitable approach is essential for optimum results and economic suitability. One of the recently considered methods used to characterize new types of materials is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials science

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 2015